177 research outputs found

    Categorification of Hopf algebras of rooted trees

    Full text link
    We exhibit a monoidal structure on the category of finite sets indexed by P-trees for a finitary polynomial endofunctor P. This structure categorifies the monoid scheme (over Spec N) whose semiring of functions is (a P-version of) the Connes--Kreimer bialgebra H of rooted trees (a Hopf algebra after base change to Z and collapsing H_0). The monoidal structure is itself given by a polynomial functor, represented by three easily described set maps; we show that these maps are the same as those occurring in the polynomial representation of the free monad on P.Comment: 29 pages. Does not compile with pdflatex due to dependency on the texdraw package. v2: expository improvements, following suggestions from the referees; final version to appear in Centr. Eur. J. Mat

    Data types with symmetries and polynomial functors over groupoids

    Get PDF
    Polynomial functors are useful in the theory of data types, where they are often called containers. They are also useful in algebra, combinatorics, topology, and higher category theory, and in this broader perspective the polynomial aspect is often prominent and justifies the terminology. For example, Tambara's theorem states that the category of finite polynomial functors is the Lawvere theory for commutative semirings. In this talk I will explain how an upgrade of the theory from sets to groupoids is useful to deal with data types with symmetries, and provides a common generalisation of and a clean unifying framework for quotient containers (cf. Abbott et al.), species and analytic functors (Joyal 1985), as well as the stuff types of Baez-Dolan. The multi-variate setting also includes relations and spans, multispans, and stuff operators. An attractive feature of this theory is that with the correct homotopical approach - homotopy slices, homotopy pullbacks, homotopy colimits, etc. - the groupoid case looks exactly like the set case. After some standard examples, I will illustrate the notion of data-types-with-symmetries with examples from quantum field theory, where the symmetries of complicated tree structures of graphs play a crucial role, and can be handled elegantly using polynomial functors over groupoids. (These examples, although beyond species, are purely combinatorial and can be appreciated without background in quantum field theory.) Locally cartesian closed 2-categories provide semantics for 2-truncated intensional type theory. For a fullfledged type theory, locally cartesian closed \infty-categories seem to be needed. The theory of these is being developed by D.Gepner and the author as a setting for homotopical species, and several of the results exposed in this talk are just truncations of \infty-results obtained in joint work with Gepner. Details will appear elsewhere.Comment: This is the final version of my conference paper presented at the 28th Conference on the Mathematical Foundations of Programming Semantics (Bath, June 2012); to appear in the Electronic Notes in Theoretical Computer Science. 16p
    corecore